A326371 Irregular triangular array: row n shows the number of condensations needed to convert all the partitions of n to strict partitions.
1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 3, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 3, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 2, 2, 1, 2, 3, 2, 2, 2, 2
Offset: 1
Examples
First seven rows: 1 1 2 1 1 2 1 1 2 3 2 1 1 1 2 2 2 2 1 1 1 2 2 1 3 2 2 2 2 1 1 1 2 1 1 2 2 2 3 2 2 2 2 2
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[m_] := Table[Tally[m][[h]][[1]]*Tally[m][[h]][[2]], {h, 1, Length[Tally[m]]}];l m[n_, k_] := IntegerPartitions[n][[k]]; q[n_, k_] := -1 + Length[FixedPointList[f, m[n, k]]]; t = Table[q[n, k], {n, 1, 16}, {k, 1, PartitionsP[n]}] (* A326371, array *) Flatten[t] (* A326371, sequence *) TableForm[t]
Comments