A326377 For any number n > 0, let f(n) be the polynomial of a single indeterminate x where the coefficient of x^e is the prime(1+e)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the polynomials of a single indeterminate x with nonnegative integer coefficients; let g be the inverse of f; a(n) = g(f(n) o f(n)) (where o denotes function composition).
1, 2, 3, 4, 11, 12, 29, 8, 81, 1100, 59, 48, 101, 195478444, 40425, 16, 157, 648, 229, 440000, 64240097649, 1445390468875226977004, 313, 192, 214358881, 44574662297516497591170630280506162081362246142404, 19683, 9921285858330292941824, 421, 72765000, 547, 32
Offset: 1
Keywords
Examples
The first terms, alongside the corresponding polynomials, are: n a(n) f(n) f(n) o f(n) -- ---- ----- ----------- 1 1 0 0 2 2 1 1 3 3 x x 4 4 2 2 5 11 x^2 x^4 6 12 x+1 x+2 7 29 x^3 x^9 8 8 3 3 9 81 2*x 4*x 10 1100 x^2+1 x^4+2*x^2+2 11 59 x^4 x^16 12 48 x+2 x+4
Programs
-
PARI
g(p) = my (c=Vecrev(Vec(p))); prod (i=1, #c, if (c[i], prime(i)^c[i], 1)) f(n, v='x) = my (f=factor(n)); sum (i=1, #f~, f[i, 2] * v^(primepi(f[i, 1]) - 1)) a(n) = g(f(n, f(n)))
Comments