A326386 Non-oblong composites m such that beta(m) = tau(m)/2 - 1 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.
8, 10, 14, 18, 22, 24, 27, 28, 32, 33, 34, 35, 38, 39, 44, 45, 46, 48, 50, 51, 52, 54, 55, 58, 60, 65, 66, 68, 69, 70, 74, 75, 76, 77, 78, 82, 84, 87, 88, 92, 94, 95, 96, 98, 99, 102, 104, 105, 106, 108, 112, 115, 116, 117, 118, 119, 120, 122, 123, 125, 126, 128, 130, 134, 135, 136
Offset: 1
Examples
tau(m) = 4 and beta(m)=1 for m = 8, 10, 14, 22, 27, 33, 34, 35, 38, ... 8 = 22_3, tau(m) = 6 and beta(m)=2 for m = 18, 28, 32, 44, 45, 50, ... 18 = 33_5 = 22_8, tau(m) = 8 and beta(m)=3 for m = 24, 54, 66, 70, ... 24 = 44_5 = 33_7 = 22_11, tau(m) = 10 and beta(m) = 4: 48, 112, ... 48 = 66_7 = 44_11 = 33_15 = 22_23.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Bernard Schott, beta = f(tau) - Abstract.
- Index entries for sequences related to Brazilian numbers.
Crossrefs
Programs
-
PARI
isoblong(n) = my(m=sqrtint(n)); m*(m+1)==n; \\ A002378 beta(n) = sum(i=2, n-2, #vecsort(digits(n, i), , 8)==1); \\ A220136 isok(m) = !isprime(m) && !isoblong(m) && (beta(m) == numdiv(m)/2 - 1); \\ Michel Marcus, Jul 15 2019
Comments