A326387 Non-oblong composites m such that beta(m) = tau(m)/2 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.
15, 21, 26, 40, 57, 62, 80, 85, 86, 91, 93, 111, 114, 124, 129, 133, 146, 170, 171, 172, 183, 215, 219, 222, 228, 242, 259, 266, 285, 292, 312, 314, 333, 341, 343, 365, 366, 381, 399, 422, 438, 444, 455, 468, 471, 482, 507, 518, 532, 549, 553
Offset: 1
Examples
tau(m) = 4 and beta(m) = 2 for m = 15, 21, 26, 57, 62, 85, 86, ... with 15 = 1111_2 = 33_4. tau(m) = 8 and beta(m) = 4 for m = 40 = 1111_3 = 55_7 = 44_9 = 22_19. tau(m) = 10 and beta(m) = 5 for m = 80 = 2222_3 = 88_9 = 55_15 = 44_19 = 22_39.
Links
Crossrefs
Programs
-
PARI
isoblong(n) = my(m=sqrtint(n)); m*(m+1)==n; \\ A002378 beta(n) = sum(i=2, n-2, #vecsort(digits(n, i), , 8)==1); \\ A220136 isok(m) = !isprime(m) && !isoblong(m) && (beta(m) == numdiv(m)/2); \\ Michel Marcus, Jul 15 2019
Comments