cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326396 Total number of colors in all series-reduced rooted trees with n leaves where colors span an initial interval of the color palette.

Original entry on oeis.org

1, 3, 26, 322, 5210, 104421, 2491498, 68907073, 2166242180, 76266794945, 2972079029674, 126987589678185, 5902427979920102, 296484317531254557, 16003975713659818226, 923838934059255332723, 56788871072327503930862, 3703444074072753204057172
Offset: 1

Views

Author

Alois P. Heinz, Sep 11 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
    a:= n-> add(k*add(A(n, k-j)*(-1)^j*binomial(k, j), j=0..k-1), k=1..n):
    seq(a(n), n=1..20);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
        Sum[Binomial[A[i, k] + j - 1, j] b[n - i j, i - 1, k], {j, 0, n/i}]]];
    A [n_, k_] := If[n < 2, n k, b[n, n - 1, k]];
    a[n_] := Sum[k Sum[A[n, k-j](-1)^j Binomial[k, j], {j, 0, k-1}], {k, 1, n}];
    Array[a, 20] (* Jean-François Alcover, Dec 22 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} k * A319376(n,k).
From Vaclav Kotesovec, Sep 18 2019: (Start)
a(n) ~ c * d^n * n^n, where d = 1.37392076830840090205551979... and c = 0.29889555940946459367729...
a(n) ~ n*A316651(n)/(2*log(2)). (End)