A326404 Triangle T(n,k) read by rows: T(n,k) = number of ways of seating n people around a table for the second time so that k pairs are maintained. Rotated sequences are counted as one.
1, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 4, 0, 2, 2, 0, 10, 10, 0, 2, 6, 24, 30, 40, 18, 0, 2, 46, 140, 224, 182, 98, 28, 0, 2, 354, 1088, 1480, 1280, 604, 192, 40, 0, 2, 3106, 9000, 12006, 9450, 4878, 1494, 330, 54, 0, 2, 29926, 83480, 107170, 82840, 41620, 14152, 3100, 520, 70, 0, 2
Offset: 0
Examples
Assuming the initial order was {1,2,3,4,5} (therefore 1 and 5 form a pair as the first and last persons are neighbors in the case of a round table) there are 5 sets of ways of seating them again so that 3 pairs are conserved: {1,2,3,5,4}, {2,3,4,1,5}, {3,4,5,2,1}, {4,5,1,3,2}, {5,1,2,4,3}. Since within each set we do not allow for circular symmetry (e.g., {1,2,3,5,4} and its rotation to form {2,3,5,4,1} are counted as one) but we allow reflection ({1,2,3,5,4} and {4,5,3,2,1} are considered distinct), the total number of ways is 5*2 and therefore T(5,3)=10. Unfolded table with n individuals (rows) forming k pairs (columns): 0 1 2 3 4 5 6 7 0 1 1 0 1 2 0 0 1 3 0 0 0 2 4 0 0 4 0 2 5 2 0 10 10 0 2 6 6 24 30 40 18 0 2 7 46 140 224 182 98 28 0 2
Links
- Witold Tatkiewicz, Rows n = 0..17 of triangle, flattened
- Witold Tatkiewicz, Link for Java program.
Crossrefs
Programs
-
Java
See Links section
Formula
T(n,n) = 2 for n > 2;
T(n,n-1) = 0 for n > 1.
Conjectures:
T(n,n-2) = n^2 + n - 2 for n > 3;
T(n,n-3) = (4/3)*n^3 + 2*n^2 - (16/3)*n + 2 for n > 4;
T(n,n-4) = (25/12)*n^4 + (23/6)*n^3 - (169/12)*n^2 + (85/6)*n - 6 for n > 5;
T(n,n-5) = (52/15)*n^5 + (25/3)*n^4 - (83/3)*n^3 + (221/3)*n^2 - (299/5)*n + 26 for n > 5;
T(n,n-6) = (707/120)*n^6 + (2037/120)*n^5 - (413/8)*n^4 + (2233/8)*n^3 - (5554/15)*n^2 + (3739/10)*n - 114 for n > 6.
Comments