A326409 Minesweeper sequence of positive integers arranged on a 2D grid along Hamiltonian path.
2, -1, -1, 3, -1, 3, -1, 3, 4, 2, -1, 3, -1, 3, 3, 2, -1, 4, -1, 2, 2, 1, -1, 2, 3, 1, 1, 2, -1, 3, -1, 3, 3, 2, 3, 2, -1, 1, 2, 2, -1, 2, -1, 2, 2, 2, -1, 1, 1, 0, 1, 2, -1, 2, 3, 1, 2, 2, -1, 2, -1, 1, 1, 1, 1, 2, -1, 1, 2, 1, -1, 3, -1, 2, 2, 1, 2, 3, -1, 1
Offset: 1
Examples
Consider positive integers distributed onto the plane along an increasing Hamiltonian path (in this case it starts downwards): . 1 4---5---6 59--60--61 64--... | | | | | | 2---3 8---7 58--57 62--63 | | 15--14 9--10 55--56 51--50 | | | | | | 16 13--12--11 54--53--52 49 | | 17--18 31--32--33--34 47--48 | | | | 20--19 30--29 36--35 46--45 | | | | 21 24--25 28 37 40--41 44 | | | | | | | | 22--23 26--27 38--39 42--43 . 1 is not prime and in adjacent grid cells there are 2 primes: 2 and 3. Therefore a(1) = 2. 2 is prime, therefore a(2) = -1. 8 is not prime and in adjacent grid cells there are 3 primes: 5, 3 and 7. Therefore a(8) = 3. Replacing n with a(n) in the plane described above, and using "." for a(n) = 0 and "*" for negative a(n), we produce a graph resembling Minesweeper, where the mines are situated at prime n: 2 3---*---3 *---2---* 1 ... | | | | | | *---* 3---* 2---2 1---1 | | 3---3 4---2 3---1 1---. | | | | | | 2 *---3---* 2---*---2 1 | | *---4 *---3---3---2 *---1 | | | | 2---* 3---* 2---3 2---2 | | | | 2 2---3 2 * 2---* 2 | | | | | | | | 1---* 1---1 1---2 2---* In order to produce the sequence, the graph is read along its original mapping.
Links
- Alexander Bogomolny, Plane Filling Curves: Hilbert's & Moore's, Cut the Knot.org, retrieved October 2019.
- Eric Weisstein's World of Mathematics, Hilbert Curve.
- Wikipedia, Hilbert Curve.
- Wikipedia, Minesweeper game.
Crossrefs
Programs
-
Mathematica
Block[{nn = 4, s, t, u}, s = ConstantArray[0, {2^#, 2^#}] &[nn + 1]; t = First[HilbertCurve@ # /. Line -> List] &[nn + 1] &[nn + 1]; s = ArrayPad[ReplacePart[s, Array[{1, 1} + t[[#]] -> # &, 2^(2 (nn + 1))]], {{1, 0}, {1, 0}}]; u = Table[If[PrimeQ@ m, -1, Count[#, _?PrimeQ] &@ Union@ Map[s[[#1, #2]] & @@ # &, Join @@ Array[FirstPosition[s, m] + {##} - 2 &, {3, 3}]]], {m, (2^nn)^2}]]
Comments