A326408 Minesweeper sequence of positive integers arranged on a 2D grid along a square maze.
2, -1, -1, 3, -1, 3, -1, 4, 3, 1, -1, 4, -1, 3, 4, 2, -1, 2, -1, 2, 3, 3, -1, 2, 1, 0, 2, 3, -1, 2, -1, 2, 2, 1, 3, 2, -1, 1, 1, 2, -1, 4, -1, 2, 3, 3, -1, 1, 0, 0, 2, 3, -1, 1, 1, 1, 3, 3, -1, 3, -1, 2, 2, 1, 0, 1, -1, 3, 3, 2, -1, 2, -1, 2, 1, 0, 1, 2, -1, 2, 1
Offset: 1
Examples
Consider positive integers distributed onto the plane along increasing square array: 1 4 5 16 17 36 ... 2 3 6 15 18 35 9 8 7 14 19 34 10 11 12 13 20 33 25 24 23 22 21 32 26 27 28 29 30 31 ... 1 is not prime and in adjacent grid cells there are 2 primes: 2 and 3. Therefore a(1) = 2. 2 is prime, therefore a(2) = -1. 8 is not prime and in adjacent grid cells there are 4 primes: 2, 3, 7 and 11. Therefore a(8) = 4. Replacing n with a(n) in the plane described above, and using "." for a(n) = 0 and "*" for negative a(n), we produce a graph resembling Minesweeper, where the mines are situated at prime n: 2 3 * 2 * 2 * 1 . 1 * 1 ... * * 3 4 2 3 1 2 1 3 2 2 3 4 * 3 * 1 1 2 * 3 * 1 1 * 4 * 2 2 2 * 3 * 2 2 1 2 * 3 3 2 * 3 3 1 2 2 . 2 3 * 2 * 4 * 2 2 2 * . 1 * 3 3 2 * 3 * 2 * 4 . 2 3 * 1 1 1 3 2 4 3 * 1 2 * 2 1 . 1 2 * 2 * 2 1 * 2 1 . . 1 * 3 3 1 1 1 1 1 . 1 1 2 2 * 2 1 . . 1 1 1 1 * 2 2 2 * 1 1 ... In order to produce the sequence, the graph is read along its original mapping.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Minesweeper-style graph read along original mapping, replacing -1 with a "mine", and 0 with blank space.
- Michael De Vlieger, Square plot of a million terms read along original mapping, with black indicating a prime and levels of gray commensurate to a(n).
- Witold Tatkiewicz, link for Java program
- Wikipedia, Minesweeper game
Crossrefs
Programs
-
Java
// See Links section.
-
Mathematica
Block[{n = 9, s}, s = ArrayPad[Array[If[#1 < 2 #2 - 1, #2^2 + #2 - #1, (#1 - #2)^2 + #2] & @@ {#1 + #2 - 1, #2} & @@ If[Or[And[#2 < #1, EvenQ@ #1], And[#1 < #2, EvenQ@ #2]], {#1, #2}, {#2, #1}] &, {# + 1, # + 1}], 1] &@ n; Table[If[PrimeQ@ m, -1, Count[#, ?PrimeQ] &@ Union@ Map[s[[#1, #2]] & @@ # &, Join @@ Array[FirstPosition[s, m] + {##} - 2 &, {3, 3}]]], {m, n^2}]] (* _Michael De Vlieger, Oct 04 2019 *)
Comments