cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326417 Dirichlet g.f.: zeta(s)^4 * (1 - 2^(-s)).

Original entry on oeis.org

1, 3, 4, 6, 4, 12, 4, 10, 10, 12, 4, 24, 4, 12, 16, 15, 4, 30, 4, 24, 16, 12, 4, 40, 10, 12, 20, 24, 4, 48, 4, 21, 16, 12, 16, 60, 4, 12, 16, 40, 4, 48, 4, 24, 40, 12, 4, 60, 10, 30, 16, 24, 4, 60, 16, 40, 16, 12, 4, 96, 4, 12, 40, 28, 16, 48, 4, 24, 16, 48, 4, 100, 4, 12, 40
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 18 2019

Keywords

Comments

Inverse Moebius transform applied twice to A001227.

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[0, n/d] Total[Mod[Divisors[d], 2]], {d, Divisors[n]}], {n, 1, 75}]
    nmax = 75; A007425 = Table[DivisorSum[n, DivisorSigma[0, #] &], {n, 1, nmax}]; Table[DivisorSum[n, A007425[[#]] &, OddQ[n/#] &], {n, 1, nmax}]
    f[2, e_] := (e + 1)*(e + 2)/2; f[p_, e_] := (e + 1)*(e + 2)*(e + 3)/6; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)

Formula

G.f.: Sum_{k>=1} tau_3(k) * x^k / (1 - x^(2*k)), where tau_3 = A007425.
a(n) = tau_4(n) if n odd, tau_4(n) - tau_4(n/2) if n even, where tau_4 = A007426.
a(n) = Sum_{d|n, n/d odd} tau_3(d).
a(n) = Sum_{d|n} A000005(n/d) * A001227(d).
Product_{n>=1} 1 / (1 - x^n)^a(n) = g.f. for A280486.
Multiplicative with a(2^e) = (e+1)*(e+2)/2, and a(p^e) = (e+1)*(e+2)*(e+3)/6 for odd primes p. - Amiram Eldar, Dec 02 2020