A326430 E.g.f.: exp(-1) * Sum_{n>=0} (exp(n*x) + x)^n / n!.
1, 3, 22, 297, 6055, 169431, 6145827, 277912452, 15225719420, 988814989679, 74822364609113, 6505084496930641, 642317112612827029, 71331999557857791694, 8835651007377368848464, 1211946040741011512724559, 182930472229597183037431011, 30216143201862939999461382959, 5435054718681965118312689633935
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + 3*x + 22*x^2/2! + 297*x^3/3! + 6055*x^4/4! + 169431*x^5/5! + 6145827*x^6/6! + 277912452*x^7/7! + 15225719420*x^8/8! + 988814989679*x^9/9! + 74822364609113*x^10/10! + ... such that A(x) = exp(-1) * (1 + (exp(x) + x) + (exp(2*x) + x)^2/2! + (exp(3*x) + x)^3/3! + (exp(4*x) + x)^4/4! + (exp(5*x) + x)^5/5! + (exp(6*x) + x)^6/6! + (exp(7*x) + x)^7/7! + (exp(8*x) + x)^8/8! + ...) also, A(x) = exp(-1) * (exp(x) + exp(x)*exp(x*exp(x)) + exp(4*x)*exp(x*exp(2*x))/2! + exp(9*x)*exp(x*exp(3*x))/3! + exp(16*x)*exp(x*exp(4*x))/4! + exp(25*x)*exp(x*exp(5*x))/5! + exp(36*x)*exp(x*exp(6*x))/6! + ...).
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..300
Crossrefs
Cf. A326433.
Programs
-
PARI
/* Requires appropriate precision */ \p200 {a(n) = my(A = exp(-1) * sum(m=0,n+300, (exp(m*x +x*O(x^n)) + x)^m / m! )); round(n!*polcoeff(A,n))} for(n=0,20,print1(a(n),", "))
Formula
E.g.f.: exp(-1) * Sum_{n>=0} (exp(n*x) + x)^n / n!.
E.g.f.: exp(-1) * Sum_{n>=0} exp(n^2*x) * exp( x*exp(n*x) ) / n!.
Comments