A326439 Number of maximal subsets of {1..n} such that no two elements have the same sorted prime signature.
1, 1, 1, 2, 2, 3, 3, 4, 4, 8, 16, 20, 20, 24, 36, 48, 48, 56, 112, 128, 192, 240, 288, 324, 324, 486, 567, 1134, 1512, 1680, 1680, 1848, 1848, 2112, 2376, 2640, 2640, 2880, 3168, 3456, 6912, 7488, 14976, 16128, 20160, 24192, 26208, 28080, 28080, 37440, 43680
Offset: 0
Keywords
Examples
The a(0) = 1 through a(9) = 8 subsets: {} {1} {12} {12} {124} {124} {1246} {1246} {12468} {12468} {13} {134} {134} {1346} {1346} {13468} {12689} {145} {1456} {1456} {14568} {13468} {1467} {14678} {13689} {14568} {14678} {15689} {16789}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
prisig[n_]:=If[n==1,{},Sort[Last/@FactorInteger[n]]]; Table[Times@@(Length/@Split[Sort[Array[prisig,n]]]),{n,0,30}]
-
PARI
a(n)={if(n==0, 1, my(M=Map()); for(i=1, n, my(f=factor(i)[,2], s=sum(k=1, #f, x^f[k]), z); mapput(M, s, if(mapisdefined(M, s, &z), z + 1, 1))); vecprod(Mat(M)[,2]))} \\ Andrew Howroyd, Aug 30 2019
Comments