A326444 Sum of all the parts in the partitions of n into 8 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 0, 8, 9, 20, 22, 48, 65, 112, 135, 208, 255, 378, 456, 640, 756, 1034, 1219, 1632, 1875, 2444, 2835, 3640, 4147, 5220, 5952, 7392, 8382, 10234, 11550, 14004, 15688, 18810, 21021, 25040, 27798, 32802, 36421, 42680, 47160, 54832, 60489
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[n * MoebiusMu[p]^2 * MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o - p]^2, {i, j, Floor[(n - j - k - l - m - o - p)/2]}], {j, k, Floor[(n - k - l - m - o - p)/3]}], {k, l, Floor[(n - l - m - o - p)/4]}], {l, m, Floor[(n - m - o - p)/5]}], {m, o, Floor[(n - o - p)/6]}], {o, p, Floor[(n - p)/7]}], {p, Floor[n/8]}], {n, 0, 50}]
Formula
a(n) = n * Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p)^2, where mu is the Möbius function (A008683).
a(n) = n * A326443(n).