A326449 Sum of the fourth largest parts of the partitions of n into 8 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 5, 7, 11, 14, 22, 26, 38, 45, 63, 73, 98, 113, 152, 174, 227, 264, 342, 394, 499, 570, 712, 810, 993, 1119, 1361, 1528, 1833, 2049, 2433, 2704, 3182, 3530, 4127, 4564, 5289, 5828, 6738, 7399, 8490, 9314, 10656, 11671
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[k * MoebiusMu[p]^2 * MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o - p]^2, {i, j, Floor[(n - j - k - l - m - o - p)/2]}], {j, k, Floor[(n - k - l - m - o - p)/3]}], {k, l, Floor[(n - l - m - o - p)/4]}], {l, m, Floor[(n - m - o - p)/5]}], {m, o, Floor[(n - o - p)/6]}], {o, p, Floor[(n - p)/7]}], {p, Floor[n/8]}], {n, 0, 50}]
Formula
a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p)^2 * k, where mu is the Möbius function (A008683).