A326453 Triangle read by rows: T(n,k) is the number of small Schröder paths of semilength k such that the area between the path and the x-axis is equal to n (n >= 0; 0 <= k <= n).
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 3, 3, 1, 0, 0, 0, 2, 6, 4, 1, 0, 0, 0, 1, 7, 10, 5, 1, 0, 0, 0, 1, 6, 16, 15, 6, 1, 0, 0, 0, 1, 5, 19, 30, 21, 7, 1, 0, 0, 0, 0, 5, 19, 45, 50, 28, 8, 1, 0, 0, 0, 0, 4, 19, 55, 90, 77, 36, 9, 1, 3, 19, 61, 131, 161, 112, 45, 10, 1
Offset: 0
Examples
Triangle begins n\k| 0 1 2 3 4 5 6 7 8 9 -------------------------------------------------- 0 | 1 1 | 0 1 2 | 0 0 1 3 | 0 0 1 1 4 | 0 0 1 2 1 5 | 0 0 0 3 3 1 6 | 0 0 0 2 6 4 1 7 | 0 0 0 1 7 10 5 1 8 | 0 0 0 1 6 16 15 6 1 9 | 0 0 0 1 5 19 30 21 7 1 ... Example of a stack of 10 up- and down-triangles with 5 up-triangles in the bottom row. /\ /\ /__\/__\ __ /\ /\ /\ /\ /\ /__\/__\/__\/__\/__\
Links
Formula
O.g.f. as a continued fraction: A(q,u) = 1/(1 + u - (1 + q)*u/(1 + u - (1 + q^3)*u/(1 + u - (1 + q^5)*u/( (...) )))) = 1 + q*u + q^2*u^2 + q^3*(u^2 + u^3) + q^4*(u^2 + 2*u^3 + u^4) + ...(q marks the area, u marks the up- triangles in the bottom row).
Alternative forms: A(q,u) = 1/(1 - q*u/(1 - q^2*u - q^3*u/(1 - q^4*u/( (...) ))));
A(q,u) = 1/(1 - q*u/(1 - (q^2 + q^3)*u/(1 - q^5*u/(1 - (q^4 + q^7)*u/(1 - q^9*u/(1 - (q^6 + q^11)*u/(1 - q^13*u/( (...) )))))))).
O.g.f. as a ratio of q-series: N(q,u)/D(q,u), where N(q,u) = Sum_{n >= 0} (-1)^n*u^n*q^(2*n^2 + n)/( (1 - q^2)*(1 - q^4)*...*(1 - q^(2*n)) * (1 - u*q^2)*(1 - u*q^4)*...*(1 - u*q^(2*n)) ) and D(q,u) = Sum_{n >= 0} (-1)^n*u^n*q^(2*n^2 - n)/( (1 - q^2)*(1 - q^4)*...*(1 - q^(2*n)) * (1 - u*q^2)*(1 - u*q^4)*...*(1 - u*q^(2*n)) ).
Comments