cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326455 Sum of all the parts in the partitions of n into 8 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 17, 18, 38, 40, 63, 88, 92, 120, 150, 182, 216, 280, 261, 360, 434, 512, 528, 714, 665, 936, 962, 1178, 1170, 1560, 1394, 1932, 1849, 2332, 2160, 2990, 2632, 3696, 3234, 4250, 3927, 5408, 4452, 6372, 5445
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n*Length[IntegerPartitions[n, {8}, Prime[Range[PrimePi[n]]]]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 07 2019 *)

Formula

a(n) = n * Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p), where c = A010051.
a(n) = n * A259198(n).
a(n) = A326456(n) + A326457(n) + A326458(n) + A326459(n) + A326460(n) + A326461(n) + A326462(n) + A326463(n).