A326327
A(n, k) = (m*k)! [x^k] MittagLefflerE(m, x)^(-n), for m = 2, n >= 0, k >= 0; square array read by descending antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, 5, -2, 1, 0, -61, 16, -3, 1, 0, 1385, -272, 33, -4, 1, 0, -50521, 7936, -723, 56, -5, 1, 0, 2702765, -353792, 25953, -1504, 85, -6, 1, 0, -199360981, 22368256, -1376643, 64256, -2705, 120, -7, 1, 0, 19391512145, -1903757312, 101031873, -3963904, 134185, -4416, 161, -8, 1
Offset: 0
Array starts:
[0] 1, 0, 0, 0, 0, 0, 0, 0, ... A000007
[1] 1, -1, 5, -61, 1385, -50521, 2702765, -199360981, ... A028296
[2] 1, -2, 16, -272, 7936, -353792, 22368256, -1903757312, ... A000182
[3] 1, -3, 33, -723, 25953, -1376643, 101031873, -9795436563, ... A326328
[4] 1, -4, 56, -1504, 64256, -3963904, 332205056, -36246728704, ...
[5] 1, -5, 85, -2705, 134185, -9451805, 892060285, -108357876905, ...
[6] 1, -6, 120, -4416, 249600, -19781376, 2078100480, -278400270336, ...
A045944,
Seen as a triangle:
[0] [1]
[1] [0, 1]
[2] [0, -1, 1]
[3] [0, 5, -2, 1]
[4] [0, -61, 16, -3, 1]
[5] [0, 1385, -272, 33, -4, 1]
[6] [0, -50521, 7936, -723, 56, -5, 1]
[7] [0, 2702765, -353792, 25953, -1504, 85, -6, 1]
-
cl[m_, p_, len_] := CoefficientList[
Series[FunctionExpand[MittagLefflerE[m, z]^p], {z, 0, len}], z];
MLPower[m_, 0, len_] := Table[KroneckerDelta[0, n], {n, 0, len - 1}];
MLPower[m_, n_, len_] := cl[m, n, len - 1] (m Range[0, len - 1])!;
For[n = 0, n < 8, n++, Print[MLPower[2, -n, 8]]]
-
def MLPower(m, p, len):
if p == 0: return [p^k for k in (0..len-1)]
f = [i/m for i in (1..m-1)]
h = lambda x: hypergeometric([], f, (x/m)^m)
g = [v for v in taylor(h(x)^p, x, 0, (len-1)*m).list() if v != 0]
return [factorial(m*k)*v for (k, v) in enumerate(g)]
for p in (0..6): print(MLPower(2, -p, 9))
A326474
A(n, k) = (m*k)! [x^k] MittagLefflerE(m, x)^n, for m = 3, n >= 0, k >= 0; square array read by descending antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 22, 3, 1, 0, 1, 170, 63, 4, 1, 0, 1, 1366, 2187, 124, 5, 1, 0, 1, 10922, 59535, 7732, 205, 6, 1, 0, 1, 87382, 1594323, 599548, 18485, 306, 7, 1, 0, 1, 699050, 43033599, 39945364, 2416045, 36126, 427, 8, 1
Offset: 0
Array starts:
[0] 1, 0, 0, 0, 0, 0, 0, ... A000007
[1] 1, 1, 1, 1, 1, 1, 1, ... A000012
[2] 1, 2, 22, 170, 1366, 10922, 87382, ... A007613
[3] 1, 3, 63, 2187, 59535, 1594323, 43033599, ...
[4] 1, 4, 124, 7732, 599548, 39945364, 2556712828, ...
[5] 1, 5, 205, 18485, 2416045, 352060805, 46660373965, ...
[6] 1, 6, 306, 36126, 6673266, 1544907006, 379696000626, ...
A051874,
-
(* The function MLPower is defined in A326327. *)
For[n = 0, n < 8, n++, Print[MLPower[3, n, 8]]]
-
# uses[MLPower from A326327]
for n in (0..6): print(MLPower(3, n, 9))
A326475
A(n, k) = (m*k)! [x^k] MittagLefflerE(m, x)^(-n), for m = 3, n >= 0, k >= 0; square array read by descending antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, 19, -2, 1, 0, -1513, 58, -3, 1, 0, 315523, -6218, 117, -4, 1, 0, -136085041, 1630330, -15795, 196, -5, 1, 0, 105261234643, -847053482, 4997781, -31924, 295, -6, 1, 0, -132705221399353, 766492673914, -3042574083, 11840836, -56285, 414, -7, 1
Offset: 0
Array starts:
[0] 1, 0, 0, 0, 0, 0, ... A000007
[1] 1, -1, 19, -1513, 315523, -136085041, ... A002115
[2] 1, -2, 58, -6218, 1630330, -847053482, ...
[3] 1, -3, 117, -15795, 4997781, -3042574083, ...
[4] 1, -4, 196, -31924, 11840836, -8271354004, ...
[5] 1, -5, 295, -56285, 23952055, -18889306805, ...
[6] 1, -6, 414, -90558, 43493598, -38227720446, ...
-
(* The function MLPower is defined in A326327. *)
For[n = 0, n < 8, n++, Print[MLPower[3, -n, 8]]]
-
# uses[MLPower from A326327]
for n in (0..6): print(MLPower(3, -n, 9))
A381459
a(n) = (2*n)! * [x^(2*n)] cosh(x)^n.
Original entry on oeis.org
1, 1, 8, 183, 8320, 628805, 71172096, 11266376947, 2376282177536, 644092653605769, 218152097885716480, 90283850458537906511, 44828889635978905387008, 26302150870235970074916493, 18001952557737056033350615040, 14215240470695667525160827723915
Offset: 0
-
Table[(2*n)! * SeriesCoefficient[Cosh[x]^n, {x, 0, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, May 11 2025 *)
-
a(n) = sum(k=0, n, (n-2*k)^(2*n)*binomial(n, k))/2^n;
Showing 1-4 of 4 results.