A326569 Number of covering antichains of subsets of {1..n} with no singletons and different edge-sizes.
1, 0, 1, 1, 13, 121, 2566, 121199, 13254529
Offset: 0
Examples
The a(2) = 1 through a(4) = 13 antichains: {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2},{1,3,4}} {{1,2},{2,3,4}} {{1,3},{1,2,4}} {{1,3},{2,3,4}} {{1,4},{1,2,3}} {{1,4},{2,3,4}} {{2,3},{1,2,4}} {{2,3},{1,3,4}} {{2,4},{1,2,3}} {{2,4},{1,3,4}} {{3,4},{1,2,3}} {{3,4},{1,2,4}}
Crossrefs
Programs
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Length[#1]==Length[#2]&],Union@@#==Range[n]&]; Table[Length[cleq[n]],{n,0,6}]
Formula
a(n) = A326570(n) - n*a(n-1) for n > 0. - Andrew Howroyd, Aug 13 2019
Extensions
a(8) from Andrew Howroyd, Aug 13 2019
Comments