cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326569 Number of covering antichains of subsets of {1..n} with no singletons and different edge-sizes.

Original entry on oeis.org

1, 0, 1, 1, 13, 121, 2566, 121199, 13254529
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sizes are the numbers of vertices in each edge, so for example the edge sizes of {{1,3},{2,5},{3,4,5}} are {2,2,3}.

Examples

			The a(2) = 1 through a(4) = 13 antichains:
  {{1,2}}  {{1,2,3}}  {{1,2,3,4}}
                      {{1,2},{1,3,4}}
                      {{1,2},{2,3,4}}
                      {{1,3},{1,2,4}}
                      {{1,3},{2,3,4}}
                      {{1,4},{1,2,3}}
                      {{1,4},{2,3,4}}
                      {{2,3},{1,2,4}}
                      {{2,3},{1,3,4}}
                      {{2,4},{1,2,3}}
                      {{2,4},{1,3,4}}
                      {{3,4},{1,2,3}}
                      {{3,4},{1,2,4}}
		

Crossrefs

Antichain covers are A006126.
Set partitions with different block sizes are A007837.
The case with singletons is A326570.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Length[#1]==Length[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,6}]

Formula

a(n) = A326570(n) - n*a(n-1) for n > 0. - Andrew Howroyd, Aug 13 2019

Extensions

a(8) from Andrew Howroyd, Aug 13 2019