cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326578 a(n) = n^2*denominator(n*Bernoulli(n-1))/denominator(Bernoulli(n-1)) = n*A326478(n).

Original entry on oeis.org

1, 2, 3, 16, 5, 36, 7, 64, 27, 100, 11, 144, 13, 196, 75, 256, 17, 324, 19, 400, 147, 484, 23, 576, 125, 676, 243, 784, 29, 900, 31, 1024, 363, 1156, 1225, 1296, 37, 1444, 507, 1600, 41, 1764, 43, 1936, 135, 2116, 47, 2304, 343, 2500, 867, 2704, 53, 2916, 3025
Offset: 1

Views

Author

Peter Luschny, Jul 16 2019

Keywords

Comments

Conjecture: If n is Carmichael then a(n) = n.
Are the fixed points of this sequence the numbers satisfying Korselt's criterion?

Crossrefs

Cf. A326478, A326579, A326577, A027641/A027642 (Bernoulli), A002997 (Carmichael), A324050 (Korselt).

Programs

  • Maple
    A326578 := n -> n*A326478(n): seq(A326578(n), n=1..55);
    db := n -> denom(bernoulli(n)): nb := n -> numer(bernoulli(n)):
    a := n -> n^2/igcd(n*nb(n-1), db(n-1)): seq(a(n), n=1..55);
  • Mathematica
    a[n_] := Module[{b =  BernoulliB[n - 1]}, n^2 * Denominator[n * b] / Denominator[b]]; Array[a, 60] (* Amiram Eldar, Apr 26 2024 *)
  • PARI
    a(n) = n^2*denominator(n*bernfrac(n-1))/denominator(bernfrac(n-1)); \\ Michel Marcus, Jul 17 2019

Formula

a(prime(n)) = prime(n).
a(n) = n^2/gcd(n*N(n-1), D(n-1)), with N(k)/D(k) = B(k) the k-th Bernoulli number.