A326623 Heinz numbers of integer partitions whose geometric mean is an integer.
2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 42, 43, 46, 47, 49, 53, 57, 59, 61, 64, 67, 71, 73, 76, 79, 81, 83, 89, 97, 101, 103, 106, 107, 109, 113, 121, 125, 126, 127, 128, 131, 137, 139, 149, 151, 157, 161, 163, 167, 169
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 2: {1} 3: {2} 4: {1,1} 5: {3} 7: {4} 8: {1,1,1} 9: {2,2} 11: {5} 13: {6} 14: {1,4} 16: {1,1,1,1} 17: {7} 19: {8} 23: {9} 25: {3,3} 27: {2,2,2} 29: {10} 31: {11} 32: {1,1,1,1,1} 37: {12}
Links
- Wikipedia, Geometric mean
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],IntegerQ[GeometricMean[primeMS[#]]]&]
Comments