cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326624 Heinz numbers of non-constant integer partitions whose geometric mean is an integer.

Original entry on oeis.org

14, 42, 46, 57, 76, 106, 126, 161, 183, 185, 194, 196, 228, 230, 302, 371, 378, 393, 399, 412, 424, 454, 477, 515, 588, 622, 679, 684, 687, 722, 742, 781, 786, 838, 1057, 1064, 1077, 1082, 1115, 1134, 1150, 1157, 1159, 1219, 1244, 1272, 1322, 1563, 1589, 1654
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    14: {1,4}
    42: {1,2,4}
    46: {1,9}
    57: {2,8}
    76: {1,1,8}
   106: {1,16}
   126: {1,2,2,4}
   161: {4,9}
   183: {2,18}
   185: {3,12}
   194: {1,25}
   196: {1,1,4,4}
   228: {1,1,2,8}
   230: {1,3,9}
   302: {1,36}
   371: {4,16}
   378: {1,2,2,2,4}
   393: {2,32}
   399: {2,4,8}
   412: {1,1,27}
		

Crossrefs

The case with prime powers is A326623.
Subsets whose geometric mean is an integer are A326027.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!PrimePowerQ[#]&&IntegerQ[GeometricMean[primeMS[#]]]&]