A326624 Heinz numbers of non-constant integer partitions whose geometric mean is an integer.
14, 42, 46, 57, 76, 106, 126, 161, 183, 185, 194, 196, 228, 230, 302, 371, 378, 393, 399, 412, 424, 454, 477, 515, 588, 622, 679, 684, 687, 722, 742, 781, 786, 838, 1057, 1064, 1077, 1082, 1115, 1134, 1150, 1157, 1159, 1219, 1244, 1272, 1322, 1563, 1589, 1654
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 14: {1,4} 42: {1,2,4} 46: {1,9} 57: {2,8} 76: {1,1,8} 106: {1,16} 126: {1,2,2,4} 161: {4,9} 183: {2,18} 185: {3,12} 194: {1,25} 196: {1,1,4,4} 228: {1,1,2,8} 230: {1,3,9} 302: {1,36} 371: {4,16} 378: {1,2,2,2,4} 393: {2,32} 399: {2,4,8} 412: {1,1,27}
Links
- Wikipedia, Geometric mean
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],!PrimePowerQ[#]&&IntegerQ[GeometricMean[primeMS[#]]]&]
Comments