A326626 Number of partitions of n into 10 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 9, 13, 16, 23, 26, 35, 41, 54, 62, 79, 90, 115, 130, 161, 182, 224, 251, 303, 341, 408, 456, 539, 601, 709, 786, 915, 1014, 1179, 1299, 1496, 1649, 1892, 2078, 2368, 2597, 2953, 3230, 3645, 3986, 4492, 4895
Offset: 0
Keywords
Links
Crossrefs
Programs
-
Mathematica
Table[Count[IntegerPartitions[n,{10}],?(AllTrue[#,SquareFreeQ]&)],{n,0,60}] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale, Aug 25 2019 *)
Formula
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} mu(r)^2 * mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q-r)^2, where mu is the Möbius function (A008683).
a(n) = A326627(n)/n for n > 0.