A326627 Sum of all the parts in the partitions of n into 10 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 11, 24, 26, 56, 75, 128, 153, 234, 304, 460, 546, 770, 943, 1296, 1550, 2054, 2430, 3220, 3770, 4830, 5642, 7168, 8283, 10302, 11935, 14688, 16872, 20482, 23439, 28360, 32226, 38430, 43602, 51876, 58455, 68816, 77503, 90816
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
Table[n * Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[MoebiusMu[r]^2 * MoebiusMu[q]^2 * MoebiusMu[p]^2 * MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o - p - q - r]^2 , {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
Formula
a(n) = n * Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} mu(r)^2 * mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q-r)^2, where mu is the Möbius function (A008683).
a(n) = n * A326626(n).