cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326645 Heinz numbers of integer partitions whose mean and geometric mean are both integers.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 46, 47, 49, 53, 57, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 183, 191, 193
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A326641.

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
   37: {12}
   41: {13}
   43: {14}
   46: {1,9}
   47: {15}
   49: {4,4}
		

Crossrefs

Heinz numbers of partitions with integer mean are A316413.
Heinz numbers of partitions with integer geometric mean are A326623.
Heinz numbers of non-constant partitions with integer mean and geometric mean are A326646.
Partitions with integer mean and geometric mean are A326641.
Subsets with integer mean and geometric mean are A326643.
Strict partitions with integer mean and geometric mean are A326029.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],IntegerQ[Mean[primeMS[#]]]&&IntegerQ[GeometricMean[primeMS[#]]]&]