A326648 Number of colored integer partitions of n using all colors of an initial interval of the color palette such that each block of part i with multiplicity j has a pattern of i*j distinct colors in increasing order.
1, 1, 2, 7, 23, 95, 481, 2515, 13130, 77546, 519770, 3641724, 25931163, 185418629, 1411248697, 11735504788, 103340890753, 931471895697, 8448978391755, 76541843977198, 715994685630321, 7110500945450780, 74757652968961770, 815423663501064107, 9012653697655462141
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 0, numtheory[sigma](n)+g(n-1)) end: h:= proc(n) option remember; local k; for k from `if`(n=0, 0, h(n-1)) do if g(k)>=n then return k fi od end: b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k
b(n-t, min(n-t, i-1), k)*binomial(k, t))(i*j), j=0..n/i))) end: a:= n-> add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k), k=h(n)..n): seq(a(n), n=0..25); -
Mathematica
g[n_] := g[n] = If[n == 0, 0, DivisorSigma[1, n] + g[n-1]]; h[n_] := h[n] = Module[{k}, For[k = If[n == 0, 0, h[n-1]], True, k++, If[g[k] >= n, Return[k]]]]; b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1 || k < h[n], 0, Sum[With[ {t = i j}, b[n-t, Min[n-t, i-1], k] Binomial[k, t]], {j, 0, n/i}]]]; a[n_] := Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {k, h[n], n}, {i, 0, k}]; a /@ Range[0, 25] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)