A326666 Numbers k such that there exists a factorization of k into factors > 1 whose mean is not an integer but whose geometric mean is an integer.
36, 64, 100, 144, 196, 216, 256, 324, 400, 484, 512, 576, 676, 784, 900, 1000, 1024, 1156, 1296, 1444, 1600, 1728, 1764, 1936, 2116, 2304, 2500, 2704, 2744, 2916, 3136, 3364, 3375, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 5832, 6084, 6400, 6724
Offset: 1
Keywords
Examples
36 has two such factorizations: (3*12) and (4*9). The sequence of terms together with their prime indices begins: 36: {1,1,2,2} 64: {1,1,1,1,1,1} 100: {1,1,3,3} 144: {1,1,1,1,2,2} 196: {1,1,4,4} 216: {1,1,1,2,2,2} 256: {1,1,1,1,1,1,1,1} 324: {1,1,2,2,2,2} 400: {1,1,1,1,3,3} 484: {1,1,5,5} 512: {1,1,1,1,1,1,1,1,1} 576: {1,1,1,1,1,1,2,2} 676: {1,1,6,6} 784: {1,1,1,1,4,4} 900: {1,1,2,2,3,3} 1000: {1,1,1,3,3,3} 1024: {1,1,1,1,1,1,1,1,1,1} 1156: {1,1,7,7} 1296: {1,1,1,1,2,2,2,2} 1444: {1,1,8,8}
Links
- Wikipedia, Geometric mean
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Select[Range[1000],Length[Select[facs[#],!IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]]>1&]