A326674 GCD of the set of positions of 1's in the reversed binary expansion of n.
1, 2, 1, 3, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
The reversed binary expansion of 40 is (0,0,0,1,0,1), with positions of 1's being {4,6}, so a(40) = GCD(4,6) = 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local B; B:= convert(n,base,2); igcd(op(select(t -> B[t]=1, [$1..ilog2(n)+1]))) end proc: map(f, [$1..100]); # Robert Israel, Oct 13 2020
-
Mathematica
Table[GCD@@Join@@Position[Reverse[IntegerDigits[n,2]],1],{n,100}]
Formula
Trivially, a(n) <= log_2(n). - Charles R Greathouse IV, Nov 15 2022
Comments