cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326691 a(n) = n/denominator(Sum_{prime p | n} 1/p - 1/n).

Original entry on oeis.org

1, 2, 3, 1, 5, 2, 7, 1, 1, 2, 11, 3, 13, 2, 1, 1, 17, 2, 19, 1, 3, 2, 23, 1, 1, 2, 1, 1, 29, 30, 31, 1, 1, 2, 1, 1, 37, 2, 3, 1, 41, 2, 43, 1, 1, 2, 47, 3, 1, 2, 1, 1, 53, 2, 5, 7, 3, 2, 59, 1, 61, 2, 1, 1, 1, 6, 67, 1, 1, 2, 71, 1, 73, 2, 3, 1, 1, 2, 79
Offset: 1

Views

Author

Jonathan Sondow, Jul 20 2019

Keywords

Comments

Denominator(Sum_{prime p | n} 1/p - 1/n) is a factor of n, since all primes in the sum divide n. So a(n) is an integer.

Examples

			a(18) = 18/denominator(Sum_{prime p | 18} 1/p - 1/18) = 18/denominator(1/2 + 1/3 - 1/18) = 18/denominator(7/9) = 18/9 = 2.
a(30) = 30/denominator(Sum_{prime p | 30} 1/p - 1/30) = 30/denominator(1/2 + 1/3 + 1/5 - 1/30) = 30/denominator(1/1) = 30/1 = 30, and 30 is a Giuga number.
		

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_] := Select[Divisors[n], PrimeQ];
    f[n_] := Denominator[Sum[1/p, {p, PrimeFactors[n]}] - 1/n];
    Table[n/f[n], {n, 79}]
  • PARI
    A326691(n) = (n/A326690(n)); \\ Antti Karttunen, Mar 15 2021

Formula

a(n) = n/A326690(n).
a(n) = n > 1 iff n is either a prime or a Giuga number A007850.
a(n) = gcd(n, 1+((n-1)*A003415(n))). [Conjectured, after an empirical formula found by LODA miner. This holds at least up to n=2^27] - Antti Karttunen, Mar 15 2021