cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326713 Numbers m that are neither arithmetic (A003601) nor RMS numbers (A140480).

Original entry on oeis.org

2, 4, 8, 9, 10, 12, 16, 18, 24, 25, 26, 28, 32, 34, 36, 40, 48, 50, 52, 58, 63, 64, 72, 74, 75, 76, 80, 81, 82, 84, 88, 90, 98, 100, 104, 106, 108, 112, 117, 120, 121, 122, 124, 128, 130, 136, 144, 146, 148, 152, 156, 160, 162, 170, 171, 172, 175, 176, 178
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2019

Keywords

Comments

Numbers m such that neither A(m) = A000203(m) / A000005(m) nor Q(m) = sqrt(A001157(m) / A000005(m)) is an integer.
Numbers m such that neither A(m) = A000203(m) / A000005(m) nor Q(m) = sqrt(A001157(m) / A000005(m)) is an integer.
Corresponding values of A(m): 3/2, 7/3, 15/4, 13/3, 9/2, 14/3, 31/5, 13/2, 15/2, 31/3, 21/2, 28/3, 21/2, 27/2, 91/9, 45/4, ...
Corresponding values of Q(m): sqrt(5/2), sqrt(7), sqrt(85/4), sqrt(91/3), sqrt(65/2), sqrt(35), sqrt(341/5), sqrt(455/6), ...
Sequence deviates from A049642; number 2217231104 (the first RMS number that is not arithmetic) is a term of A049642 but is not a term of this sequence.

Crossrefs

Programs

  • Magma
    [m: m in [1..10^5] | not IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and not IsIntegral(Sqrt(&+[d^2: d in Divisors(m)] / NumberOfDivisors(m)))];
  • Mathematica
    Select[Range[178], !IntegerQ @ RootMeanSquare[Divisors[#]] && !Divisible[ DivisorSigma[1, #], DivisorSigma[0, #]] &] (* Amiram Eldar, Oct 20 2019 *)