A326726 The prime factorization of abs(E(2k)) for k >= 2, E(k) the k-th Euler number. Factors sorted by size with the smallest factor negated. a(n) = -1 by convention for n = 1, 2.
-1, -1, -5, -61, -5, 277, -19, 2659, -5, 13, 43, 967, -47, 4241723, -5, 17, 228135437, -79, 349, 87224971, -5, 5, 41737, 354957173, -31, 1567103, 1427513357, -5, 13, 2137, 111691689741601, -67, 61001082228255580483, -5, 19, 29, 71, 30211, 2717447, 77980901
Offset: 1
Examples
The data is given as a flatted list of factorizations written with the conventions stated above. Because it is a list the offset is 1. The list starts: [[-1], [-1], [-5], [-61], [-5, 277], [-19, 2659], [-5, 13, 43, 967], [-47, 4241723], [-5, 17, 228135437], [-79, 349, 87224971], [-5, 5, 41737, 354957173], ... ]. The first few factorizations are: E(4) = 5; E(6) = 61; E(8) = 5 * 277; E(10) = 19 * 2659; E(12) = 5 * 13 * 43 * 967; E(14) = 47 * 4241723; E(16) = 5 * 17 * 228135437; E(18) = 79 * 349 * 87224971; E(20) = 5 * 5 * 41737 * 354957173; E(22) = 31 * 1567103 * 1427513357; E(24) = 5 * 13 * 2137 * 111691689741601;
Links
- Peter Luschny, Table of n, a(n) for n = 1..428
- factordb, Status of E(166).
- S. S. Wagstaff, Prime factors of the absolute values of Euler numbers
Programs
-
Sage
# See b-file.
Comments