A326727 The prime factorization of abs(numerator(B(2k))) for k >= 5, B(k) the k-th Bernoulli number. Factors sorted by size with the smallest factor negated. a(n) = -1 by convention for 1 <= n <= 5.
-1, -1, -1, -1, -1, -5, -691, -7, -3617, -43867, -283, 617, -11, 131, 593, -103, 2294797, -13, 657931, -7, 9349, 362903, -5, 1721, 1001259881, -37, 683, 305065927, -17, 151628697551, -26315271553053477373, -19, 154210205991661, -137616929, 1897170067619
Offset: 1
Examples
The data is given as a flatted list of factorizations written with the conventions stated above. Because it is a list the offset is 1. The list starts: [[-1], [-1], [-1], [-1], [-1], [-5], [-691], [-7], [-3617], [-43867], [-283, 617], [-11, 131, 593], [-103, 2294797], [-13, 657931], [-7, 9349, 362903], ... ]. . The first few factorizations are: B(10) = 5; B(12) = 691; B(14) = 7; B(16) = 3617; B(18) = 43867; B(20) = 283 * 617; B(22) = 11 * 131 * 593; B(24) = 103 * 2294797; B(26) = 13 * 657931; B(28) = 7 * 9349 * 362903; B(30) = 5 * 1721 * 1001259881;
Links
- Peter Luschny, Table of n, a(n) for n = 1..460
- factordb, Status of numerator(B(206)).
- S. S. Wagstaff, Prime factors of the absolute values of Bernoulli numerators
Programs
-
Sage
# See b-file.
Comments