A326748 Triangular array, read by rows: T(n,k) = denominator of Jtilde_k(n), 1 <= k <= 2*n+2.
1, 1, 3, 4, 1, 1, 15, 64, 48, 8, 4, 4, 35, 256, 8640, 576, 216, 144, 36, 36, 315, 16384, 430080, 1024, 138240, 4608, 6912, 576, 576, 576, 693, 65536, 387072000, 3686400, 4838400, 30720, 576000, 115200, 43200, 11520, 14400, 14400
Offset: 0
Examples
Triangle begins: 1, 1; 2/3, 3/4, 1, 1; 8/15, 41/64, 65/48, 11/8, 1/4, 1/4; 16/35, 147/256, 13247/8640, 907/576, 109/216, 73/144, 1/36, 1/36;
Links
- Seiichi Manyama, Rows n = 0..15, flattened
- Kazufumi Kimoto, Masato Wakayama, Apéry-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators, Kyushu Journal of Mathematics, Vol. 60 (2006) No. 2 p. 383-404 (see Table 2).
- Kazufumi Kimoto, Masato Wakayama, Apéry-like numbers for non-commutative harmonic oscillators and automorphic integrals, arXiv:1905.01775 [math.PR], 2019. See p.22.
Crossrefs
Programs
-
Ruby
def f(n) return 1 if n < 2 (1..n).inject(:*) end def Jtilde(k, n) return 0 if k == 0 return (2r ** n * f(n)) ** 2 / f(2 * n + 1) if k == 1 if n == 0 return 1 if k == 2 return 0 end if n == 1 return 3r / 4 if k == 2 return 1 if k == 3 || k == 4 return 0 end ((8r * n * n - 8 * n + 3) * Jtilde(k, n - 1) - 4 * (n - 1) ** 2 * Jtilde(k, n - 2) + 4 * Jtilde(k - 2, n - 1)) / (4 * n * n) end def A326748(n) (0..n).map{|i| (1..2 * i + 2).map{|j| Jtilde(j, i).denominator}}.flatten end p A326748(10)
Comments