A326750 BII-numbers of clutters (connected antichains of nonempty sets).
0, 1, 2, 4, 8, 16, 20, 32, 36, 48, 52, 64, 128, 256, 260, 272, 276, 292, 304, 308, 320, 512, 516, 532, 544, 548, 560, 564, 576, 768, 772, 784, 788, 800, 804, 816, 820, 832, 1024, 1040, 1056, 1072, 1088, 2048, 2064, 2068, 2080, 2084, 2096, 2100, 2112, 2304
Offset: 1
Examples
The sequence of all clutters together with their BII-numbers begins: 0: {} 1: {{1}} 2: {{2}} 4: {{1,2}} 8: {{3}} 16: {{1,3}} 20: {{1,2},{1,3}} 32: {{2,3}} 36: {{1,2},{2,3}} 48: {{1,3},{2,3}} 52: {{1,2},{1,3},{2,3}} 64: {{1,2,3}} 128: {{4}} 256: {{1,4}} 260: {{1,2},{1,4}} 272: {{1,3},{1,4}} 276: {{1,2},{1,3},{1,4}} 292: {{1,2},{2,3},{1,4}} 304: {{1,3},{2,3},{1,4}} 308: {{1,2},{1,3},{2,3},{1,4}} 320: {{1,2,3},{1,4}}
Links
- John Tyler Rascoe, Table of n, a(n) for n = 1..6834
- John Tyler Rascoe, Python program.
Crossrefs
The number of clutters spanning n vertices is A048143(n).
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Select[Range[0,1000],stableQ[bpe/@bpe[#],SubsetQ]&&Length[csm[bpe/@bpe[#]]]<=1&]
-
Python
# see linked program
Comments