A326754 BII-numbers of set-systems covering an initial interval of positive integers.
0, 1, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1
Examples
The sequence of all covering set-systems together with their BII-numbers begins: 0: {} 1: {{1}} 3: {{1},{2}} 4: {{1,2}} 5: {{1},{1,2}} 6: {{2},{1,2}} 7: {{1},{2},{1,2}} 11: {{1},{2},{3}} 12: {{1,2},{3}} 13: {{1},{1,2},{3}} 14: {{2},{1,2},{3}} 15: {{1},{2},{1,2},{3}} 18: {{2},{1,3}} 19: {{1},{2},{1,3}} 20: {{1,2},{1,3}} 21: {{1},{1,2},{1,3}} 22: {{2},{1,2},{1,3}} 23: {{1},{2},{1,2},{1,3}} 26: {{2},{3},{1,3}} 27: {{1},{2},{3},{1,3}} 28: {{1,2},{3},{1,3}} 29: {{1},{1,2},{3},{1,3}} 30: {{2},{1,2},{3},{1,3}}
Links
- John Tyler Rascoe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; Select[Range[0,100],normQ[Join@@bpe/@bpe[#]]&]
-
Python
from itertools import chain, count, islice def bin_i(n): #binary indices return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1']) def a_gen(): for n in count(0): s = set(i for i in chain.from_iterable([bin_i(k) for k in bin_i(n)])) y = len(s) if sum(s) == (y*(y+1))//2: yield n A326754_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Jun 20 2024
Comments