cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326781 No position of a 1 in the reversed binary expansion of n is a power of 2.

Original entry on oeis.org

0, 4, 16, 20, 32, 36, 48, 52, 64, 68, 80, 84, 96, 100, 112, 116, 256, 260, 272, 276, 288, 292, 304, 308, 320, 324, 336, 340, 352, 356, 368, 372, 512, 516, 528, 532, 544, 548, 560, 564, 576, 580, 592, 596, 608, 612, 624, 628, 768, 772, 784, 788, 800, 804, 816
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2019

Keywords

Comments

Also BII-numbers (see A326031) of set-systems with no singleton edges. For example, the sequence of such set-systems together with their BII-numbers begins:
0: {}
4: {{1,2}}
16: {{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
68: {{1,2},{1,2,3}}
80: {{1,3},{1,2,3}}
84: {{1,2},{1,3},{1,2,3}}
96: {{2,3},{1,2,3}}
100: {{1,2},{2,3},{1,2,3}}
112: {{1,3},{2,3},{1,2,3}}
116: {{1,2},{1,3},{2,3},{1,2,3}}
256: {{1,4}}
260: {{1,2},{1,4}}
272: {{1,3},{1,4}}
276: {{1,2},{1,3},{1,4}}

Examples

			The binary indices of n are row n of A048793. The sequence of terms together with their binary indices begins:
    0: {}
    4: {3}
   16: {5}
   20: {3,5}
   32: {6}
   36: {3,6}
   48: {5,6}
   52: {3,5,6}
   64: {7}
   68: {3,7}
   80: {5,7}
   84: {3,5,7}
   96: {6,7}
  100: {3,6,7}
  112: {5,6,7}
  116: {3,5,6,7}
  256: {9}
  260: {3,9}
  272: {5,9}
  276: {3,5,9}
		

Crossrefs

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],!MemberQ[Length/@bpe/@bpe[#],1]&]

Formula

Conjectures from Colin Barker, Jul 27 2019: (Start)
G.f.: 4*x^2*(1 + 3*x + x^2 + 3*x^3 + x^4 + 3*x^5 + x^6 + 3*x^7 + x^8 + 3*x^9 + x^10 + 3*x^11 + x^12 + 3*x^13 + x^14 + 35*x^15) / ((1 - x)^2*(1 + x)*(1 + x^2)*(1 + x^4)*(1 + x^8)).
a(n) = a(n-1) + a(n-16) - a(n-17) for n>17.
(End)