A326781 No position of a 1 in the reversed binary expansion of n is a power of 2.
0, 4, 16, 20, 32, 36, 48, 52, 64, 68, 80, 84, 96, 100, 112, 116, 256, 260, 272, 276, 288, 292, 304, 308, 320, 324, 336, 340, 352, 356, 368, 372, 512, 516, 528, 532, 544, 548, 560, 564, 576, 580, 592, 596, 608, 612, 624, 628, 768, 772, 784, 788, 800, 804, 816
Offset: 1
Examples
The binary indices of n are row n of A048793. The sequence of terms together with their binary indices begins: 0: {} 4: {3} 16: {5} 20: {3,5} 32: {6} 36: {3,6} 48: {5,6} 52: {3,5,6} 64: {7} 68: {3,7} 80: {5,7} 84: {3,5,7} 96: {6,7} 100: {3,6,7} 112: {5,6,7} 116: {3,5,6,7} 256: {9} 260: {3,9} 272: {5,9} 276: {3,5,9}
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Select[Range[100],!MemberQ[Length/@bpe/@bpe[#],1]&]
Formula
Conjectures from Colin Barker, Jul 27 2019: (Start)
G.f.: 4*x^2*(1 + 3*x + x^2 + 3*x^3 + x^4 + 3*x^5 + x^6 + 3*x^7 + x^8 + 3*x^9 + x^10 + 3*x^11 + x^12 + 3*x^13 + x^14 + 35*x^15) / ((1 - x)^2*(1 + x)*(1 + x^2)*(1 + x^4)*(1 + x^8)).
a(n) = a(n-1) + a(n-16) - a(n-17) for n>17.
(End)
Comments