A326782
Numbers whose binary indices are prime numbers.
Original entry on oeis.org
0, 2, 4, 6, 16, 18, 20, 22, 64, 66, 68, 70, 80, 82, 84, 86, 1024, 1026, 1028, 1030, 1040, 1042, 1044, 1046, 1088, 1090, 1092, 1094, 1104, 1106, 1108, 1110, 4096, 4098, 4100, 4102, 4112, 4114, 4116, 4118, 4160, 4162, 4164, 4166, 4176, 4178, 4180, 4182, 5120
Offset: 1
The sequence of terms together with their binary indices begins:
0: {}
2: {2}
4: {3}
6: {2,3}
16: {5}
18: {2,5}
20: {3,5}
22: {2,3,5}
64: {7}
66: {2,7}
68: {3,7}
70: {2,3,7}
80: {5,7}
82: {2,5,7}
84: {3,5,7}
86: {2,3,5,7}
1024: {11}
1026: {2,11}
1028: {3,11}
1030: {2,3,11}
-
f:= proc(n) local L,i;
L:= convert(n,base,2);
add(L[i]*2^(ithprime(i)-1),i=1..nops(L))
end proc:
map(f, [$0..100]); # Robert Israel, Jul 26 2019
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[0,100],And@@PrimeQ/@bpe[#]&]
A367770
Number of sets of nonempty non-singleton subsets of {1..n} satisfying a strict version of the axiom of choice.
Original entry on oeis.org
1, 1, 2, 15, 558, 81282, 39400122, 61313343278, 309674769204452
Offset: 0
The a(3) = 15 set-systems:
{}
{{1,2}}
{{1,3}}
{{2,3}}
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,2},{1,2,3}}
{{1,3},{2,3}}
{{1,3},{1,2,3}}
{{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
{{1,2},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
Set-systems without singletons are counted by
A016031, covering
A323816.
The complement is counted by
A367769.
The complement allowing singletons and empty sets is
A367901.
Cf.
A059201,
A083323,
A092918,
A102896,
A283877,
A305000,
A306445,
A355739,
A355740,
A367904,
A367905.
-
Table[Length[Select[Subsets[Select[Subsets[Range[n]], Length[#]>1&]], Select[Tuples[#], UnsameQ@@#&]!={}&]],{n,0,3}]
A329554
Smallest MM-number of a set of n nonempty sets with no singletons.
Original entry on oeis.org
1, 13, 377, 16211, 761917, 55619941, 4393975339, 443791509239, 50148440544007, 6870336354528959, 954976753279525301, 142291536238649269849, 23193520406899830985387, 3873317907952271774559629, 701070541339361191195292849, 139513037726532877047863276951
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
13: {{1,2}}
377: {{1,2},{1,3}}
16211: {{1,2},{1,3},{1,4}}
761917: {{1,2},{1,3},{1,4},{2,3}}
The smallest BII-number of a set of n sets is
A000225(n).
BII-numbers of set-systems with no singletons are
A326781.
MM-numbers of sets of nonempty sets are the odd terms of
A302494.
MM-numbers of multisets of nonempty non-singleton sets are
A320629.
The version with empty edges is
A329556.
The version with singletons is
A329557.
The version with empty edges and singletons is
A329558.
-
sqvs=Select[Range[2,30],SquareFreeQ[#]&&!PrimeQ[#]&];
Table[Times@@Prime/@Take[sqvs,k],{k,0,Length[sqvs]}]
A371443
Numbers whose binary indices are nonprime numbers.
Original entry on oeis.org
1, 8, 9, 32, 33, 40, 41, 128, 129, 136, 137, 160, 161, 168, 169, 256, 257, 264, 265, 288, 289, 296, 297, 384, 385, 392, 393, 416, 417, 424, 425, 512, 513, 520, 521, 544, 545, 552, 553, 640, 641, 648, 649, 672, 673, 680, 681, 768, 769, 776, 777, 800, 801, 808
Offset: 1
The terms together with their binary expansions and binary indices begin:
1: 1 ~ {1}
8: 1000 ~ {4}
9: 1001 ~ {1,4}
32: 100000 ~ {6}
33: 100001 ~ {1,6}
40: 101000 ~ {4,6}
41: 101001 ~ {1,4,6}
128: 10000000 ~ {8}
129: 10000001 ~ {1,8}
136: 10001000 ~ {4,8}
137: 10001001 ~ {1,4,8}
160: 10100000 ~ {6,8}
161: 10100001 ~ {1,6,8}
168: 10101000 ~ {4,6,8}
169: 10101001 ~ {1,4,6,8}
256: 100000000 ~ {9}
257: 100000001 ~ {1,9}
264: 100001000 ~ {4,9}
265: 100001001 ~ {1,4,9}
288: 100100000 ~ {6,9}
289: 100100001 ~ {1,6,9}
296: 100101000 ~ {4,6,9}
For powers of 2 instead of nonprime numbers we have
A253317.
For prime indices instead of binary indices we have
A320628.
For prime instead of nonprime we have
A326782.
For composite numbers we have
A371444.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],And@@Not/@PrimeQ/@bpe[#]&]
A371444
Numbers whose binary indices are composite numbers.
Original entry on oeis.org
8, 32, 40, 128, 136, 160, 168, 256, 264, 288, 296, 384, 392, 416, 424, 512, 520, 544, 552, 640, 648, 672, 680, 768, 776, 800, 808, 896, 904, 928, 936, 2048, 2056, 2080, 2088, 2176, 2184, 2208, 2216, 2304, 2312, 2336, 2344, 2432, 2440, 2464, 2472, 2560, 2568
Offset: 1
The terms together with their binary expansions and binary indices begin:
8: 1000 ~ {4}
32: 100000 ~ {6}
40: 101000 ~ {4,6}
128: 10000000 ~ {8}
136: 10001000 ~ {4,8}
160: 10100000 ~ {6,8}
168: 10101000 ~ {4,6,8}
256: 100000000 ~ {9}
264: 100001000 ~ {4,9}
288: 100100000 ~ {6,9}
296: 100101000 ~ {4,6,9}
384: 110000000 ~ {8,9}
392: 110001000 ~ {4,8,9}
416: 110100000 ~ {6,8,9}
424: 110101000 ~ {4,6,8,9}
512: 1000000000 ~ {10}
520: 1000001000 ~ {4,10}
544: 1000100000 ~ {6,10}
552: 1000101000 ~ {4,6,10}
640: 1010000000 ~ {8,10}
648: 1010001000 ~ {4,8,10}
672: 1010100000 ~ {6,8,10}
For powers of 2 instead of composite numbers we have
A253317.
For prime indices we have the even case of
A320628.
For prime instead of composite we have
A326782.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],EvenQ[#]&&And@@Not/@PrimeQ/@bpe[#]&]
A371449
Numbers whose prime indices are not powers of 2.
Original entry on oeis.org
1, 5, 11, 13, 17, 23, 25, 29, 31, 37, 41, 43, 47, 55, 59, 61, 65, 67, 71, 73, 79, 83, 85, 89, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 137, 139, 143, 145, 149, 151, 155, 157, 163, 167, 169, 173, 179, 181, 185, 187, 191, 193, 197, 199, 205, 211, 215
Offset: 1
The terms together with their prime indices begin:
1: {} 85: {3,7} 169: {6,6} 253: {5,9}
5: {3} 89: {24} 173: {40} 257: {55}
11: {5} 97: {25} 179: {41} 263: {56}
13: {6} 101: {26} 181: {42} 269: {57}
17: {7} 103: {27} 185: {3,12} 271: {58}
23: {9} 107: {28} 187: {5,7} 275: {3,3,5}
25: {3,3} 109: {29} 191: {43} 277: {59}
29: {10} 113: {30} 193: {44} 281: {60}
31: {11} 115: {3,9} 197: {45} 283: {61}
37: {12} 121: {5,5} 199: {46} 289: {7,7}
41: {13} 125: {3,3,3} 205: {3,13} 293: {62}
43: {14} 127: {31} 211: {47} 295: {3,17}
47: {15} 137: {33} 215: {3,14} 299: {6,9}
55: {3,5} 139: {34} 221: {6,7} 305: {3,18}
59: {17} 143: {5,6} 223: {48} 307: {63}
61: {18} 145: {3,10} 227: {49} 313: {65}
65: {3,6} 149: {35} 229: {50} 317: {66}
67: {19} 151: {36} 233: {51} 319: {5,10}
71: {20} 155: {3,11} 235: {3,15} 325: {3,3,6}
73: {21} 157: {37} 239: {52} 331: {67}
79: {22} 163: {38} 241: {53} 335: {3,19}
83: {23} 167: {39} 251: {54} 337: {68}
Partitions of this type are counted by
A101417.
For binary indices instead of prime indices we have
A326781.
For primes instead of powers of 2 we have
A320628.
A070939 gives length of binary expansion.
Showing 1-6 of 6 results.
Comments