cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A371289 Numbers whose binary indices have squarefree product.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 48, 49, 64, 65, 66, 67, 68, 69, 70, 71, 80, 81, 82, 83, 84, 85, 86, 87, 96, 97, 112, 113, 512, 513, 516, 517, 576, 577, 580, 581, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1040, 1041, 1042
Offset: 1

Views

Author

Gus Wiseman, Mar 25 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
     0:              0 ~ {}
     1:              1 ~ {1}
     2:             10 ~ {2}
     3:             11 ~ {1,2}
     4:            100 ~ {3}
     5:            101 ~ {1,3}
     6:            110 ~ {2,3}
     7:            111 ~ {1,2,3}
    16:          10000 ~ {5}
    17:          10001 ~ {1,5}
    18:          10010 ~ {2,5}
    19:          10011 ~ {1,2,5}
    20:          10100 ~ {3,5}
    21:          10101 ~ {1,3,5}
    22:          10110 ~ {2,3,5}
    23:          10111 ~ {1,2,3,5}
    32:         100000 ~ {6}
    33:         100001 ~ {1,6}
    48:         110000 ~ {5,6}
    49:         110001 ~ {1,5,6}
    64:        1000000 ~ {7}
    65:        1000001 ~ {1,7}
    66:        1000010 ~ {2,7}
		

Crossrefs

For prime instead of binary indices we have A302505.
For squarefree parts we have A368533, for prime indices A302478.
A005117 lists squarefree numbers.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],SquareFreeQ[Times@@bpe[#]]&]

A371443 Numbers whose binary indices are nonprime numbers.

Original entry on oeis.org

1, 8, 9, 32, 33, 40, 41, 128, 129, 136, 137, 160, 161, 168, 169, 256, 257, 264, 265, 288, 289, 296, 297, 384, 385, 392, 393, 416, 417, 424, 425, 512, 513, 520, 521, 544, 545, 552, 553, 640, 641, 648, 649, 672, 673, 680, 681, 768, 769, 776, 777, 800, 801, 808
Offset: 1

Views

Author

Gus Wiseman, Mar 30 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
    1:          1 ~ {1}
    8:       1000 ~ {4}
    9:       1001 ~ {1,4}
   32:     100000 ~ {6}
   33:     100001 ~ {1,6}
   40:     101000 ~ {4,6}
   41:     101001 ~ {1,4,6}
  128:   10000000 ~ {8}
  129:   10000001 ~ {1,8}
  136:   10001000 ~ {4,8}
  137:   10001001 ~ {1,4,8}
  160:   10100000 ~ {6,8}
  161:   10100001 ~ {1,6,8}
  168:   10101000 ~ {4,6,8}
  169:   10101001 ~ {1,4,6,8}
  256:  100000000 ~ {9}
  257:  100000001 ~ {1,9}
  264:  100001000 ~ {4,9}
  265:  100001001 ~ {1,4,9}
  288:  100100000 ~ {6,9}
  289:  100100001 ~ {1,6,9}
  296:  100101000 ~ {4,6,9}
		

Crossrefs

For powers of 2 instead of nonprime numbers we have A253317.
For prime indices instead of binary indices we have A320628.
For prime instead of nonprime we have A326782.
For composite numbers we have A371444.
An opposite version is A371449.
A000040 lists prime numbers, complement A018252.
A000961 lists prime-powers.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],And@@Not/@PrimeQ/@bpe[#]&]

A371444 Numbers whose binary indices are composite numbers.

Original entry on oeis.org

8, 32, 40, 128, 136, 160, 168, 256, 264, 288, 296, 384, 392, 416, 424, 512, 520, 544, 552, 640, 648, 672, 680, 768, 776, 800, 808, 896, 904, 928, 936, 2048, 2056, 2080, 2088, 2176, 2184, 2208, 2216, 2304, 2312, 2336, 2344, 2432, 2440, 2464, 2472, 2560, 2568
Offset: 1

Views

Author

Gus Wiseman, Mar 30 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
     8:           1000 ~ {4}
    32:         100000 ~ {6}
    40:         101000 ~ {4,6}
   128:       10000000 ~ {8}
   136:       10001000 ~ {4,8}
   160:       10100000 ~ {6,8}
   168:       10101000 ~ {4,6,8}
   256:      100000000 ~ {9}
   264:      100001000 ~ {4,9}
   288:      100100000 ~ {6,9}
   296:      100101000 ~ {4,6,9}
   384:      110000000 ~ {8,9}
   392:      110001000 ~ {4,8,9}
   416:      110100000 ~ {6,8,9}
   424:      110101000 ~ {4,6,8,9}
   512:     1000000000 ~ {10}
   520:     1000001000 ~ {4,10}
   544:     1000100000 ~ {6,10}
   552:     1000101000 ~ {4,6,10}
   640:     1010000000 ~ {8,10}
   648:     1010001000 ~ {4,8,10}
   672:     1010100000 ~ {6,8,10}
		

Crossrefs

For powers of 2 instead of composite numbers we have A253317.
For prime indices we have the even case of A320628.
For prime instead of composite we have A326782.
This is the even case of A371444.
An opposite version is A371449.
A000040 lists prime numbers, complement A018252.
A000961 lists prime-powers.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],EvenQ[#]&&And@@Not/@PrimeQ/@bpe[#]&]
Showing 1-3 of 3 results.