cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326784 BII-numbers of regular set-systems.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 16, 18, 25, 30, 32, 33, 42, 45, 51, 52, 63, 64, 75, 76, 82, 94, 97, 109, 115, 116, 127, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 160, 161, 192, 256, 258, 264, 266, 288, 385, 390, 408, 427, 428, 434, 458
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. A set-system is regular if all vertices appear the same number of times.

Examples

			The sequence of all regular set-systems together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   4: {{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  12: {{1,2},{3}}
  16: {{1,3}}
  18: {{2},{1,3}}
  25: {{1},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  32: {{2,3}}
  33: {{1},{2,3}}
  42: {{2},{3},{2,3}}
  45: {{1},{1,2},{3},{2,3}}
  51: {{1},{2},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],SameQ@@Length/@Split[Sort[Join@@bpe/@bpe[#]]]&]