A326792 Triangular array: T(n,k) equals the number of small Schröder paths such that the area between the path and the x-axis contains n up-triangles and k down-triangles; n >= 1, k >= 0.
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 13, 8, 1, 1, 9, 25, 28, 11, 1, 1, 11, 41, 68, 51, 15, 1, 1, 13, 61, 136, 155, 86, 19, 1, 1, 15, 85, 240, 371, 314, 135, 24, 1, 1, 17, 113, 388, 763, 882, 585, 202, 29, 1, 1, 19, 145, 588, 1411, 2086, 1899, 1019, 290, 35, 1
Offset: 1
Examples
Triangle begins n\k| 0 1 2 3 4 5 6 7 8 9 - - - - - - - - - - - - - - - - - - - - - 1 | 1 2 | 1 1 3 | 1 3 1 4 | 1 5 5 1 5 | 1 7 13 8 1 6 | 1 9 25 28 11 1 7 | 1 11 41 68 51 15 1 8 | 1 13 61 136 155 86 19 1 9 | 1 15 85 240 371 314 135 24 1 10 | 1 17 113 388 763 882 585 202 29 1 ...
Links
- P. Bala, Illustration for terms of row 4
- P. Bala, Notes on A326792
Formula
O.g.f. as a continued fraction including initial term 1: (u marks up-triangles and d marks down-triangles)
A(u,d) = 1/(1 - u/(1 - u*d - u^2*d/(1 - u^2*d^2 - u^3*d^2/(1 - u^3*d^3 - u^4*d^3/(1 - u^4*d^4 - (...) ))))) = 1 + u + (1 + d)*u^2 + (1 + 3*d + d^2)*u^3 + ....
A(u,d) = 1/(2 - (1 + u)/(2 - (1 + u^2*d)/(2 - (1 + u^3*d^2)/(2 - (...) )))).
O.g.f. as a ratio of q-series: N(u,d)/D(u,d), where N(u,d) = Sum_{n >= 0} (-1)^n*u^(n^2+n)*d^(n^2)/( Product_{k = 1..n} ( 1 - (u*d)^k )^2 ) and D(u,d) = Sum_{n >= 0} (-1)^n*u^(n^2)*d^(n^2-n)/( Product_{k = 1..n} ( 1 - (u*d)^k )^2 )
Row sums = A326793.
Comments