A326806 Numbers k such that k multiplied by the sum of all its digits contains k as a substring.
0, 1, 5, 6, 10, 19, 28, 37, 46, 50, 55, 60, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 208, 217, 226, 235, 244, 253, 262, 271, 280, 307, 316, 325, 334, 343, 352, 361, 370, 406, 415, 424, 433, 442, 451, 460, 500, 505, 514, 523, 532
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= proc(n) option remember; local k; if n=1 then 0 else for k from 1+a(n-1) while searchtext(cat(k), cat(k* add(i, i=convert(k, base, 10))))=0 do od: k fi end: seq(a(n), n=1..75);
-
Python
n, A326806_list = 0, [] while len(A326806_list) < 10000: sn = str(n) if sn in str(n*sum(int(d) for d in sn)): A326806_list.append(n) n += 1 # Chai Wah Wu, Oct 19 2019
Comments