cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326812 Expansion of Sum_{k>=1} (2^k - 1) * x^(2^k - 1) / (1 - x^(2^k - 1)).

Original entry on oeis.org

1, 1, 4, 1, 1, 4, 8, 1, 4, 1, 1, 4, 1, 8, 19, 1, 1, 4, 1, 1, 11, 1, 1, 4, 1, 1, 4, 8, 1, 19, 32, 1, 4, 1, 8, 4, 1, 1, 4, 1, 1, 11, 1, 1, 19, 1, 1, 4, 8, 1, 4, 1, 1, 4, 1, 8, 4, 1, 1, 19, 1, 32, 74, 1, 1, 4, 1, 1, 4, 8, 1, 4, 1, 1, 19, 1, 8, 4, 1, 1, 4, 1, 1, 11, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 19 2019

Keywords

Comments

Sum of divisors of n of the form 2^j - 1 for j >= 1.

Crossrefs

Cf. A000225, A000929, A036987, A038712, A079559, A154402, A161790 (positions of 1's).

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Sum[(2^k - 1) x^(2^k - 1)/(1 - x^(2^k - 1)), {k, 1, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest
    Table[Sum[Mod[CatalanNumber[d], 2] d, {d, Divisors[n]}], {n, 1, 85}]

Formula

L.g.f.: -log(Product_{n>=1} (1 - x^(2^n - 1))) = Sum_{n>=1} a(n) * x^n / n.
exp(Sum_{n>=1} a(n) * x^n / n) = g.f. for A000929.
exp(Sum_{n>=1} (-1)^(n + 1) * a(n) * x^n / n) = g.f. for A079559.
a(n) = Sum_{d|n} A036987(d) * d.