A326816 a(0) = 0, a(1) = 1, and for n > 1, a(n) = Sum_{k = 0..n} a((n-k) AND k) (where AND denotes the bitwise AND operator).
0, 1, 1, 0, 3, 2, 2, 0, 9, 10, 10, 12, 12, 8, 4, 0, 27, 38, 46, 60, 66, 68, 72, 72, 90, 84, 76, 72, 44, 24, 8, 0, 81, 130, 182, 228, 302, 332, 384, 360, 526, 572, 636, 600, 624, 576, 568, 432, 764, 888, 996, 1008, 972, 936, 888, 864, 712, 560, 408, 320, 144
Offset: 0
Examples
a(2) = a(2 AND 0) + a(1 AND 1) + a(0 AND 2) = a(0) + a(1) + a(0) = 1.
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..8191
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n, add(a(Bits[And](n-k, k)), k=0..n)) end: seq(a(n), n=0..80); # Alois P. Heinz, Oct 20 2019
-
PARI
a = vector(61); for (n=0, #a-1, print1 (a[1+n] = if (n==0, 0, n==1, 1, sum (k=0, n, a[1+bitand(n-k,k)])) ", "))
Formula
a(n) is odd iff n is a power of 2.
a(n) = 0 iff n = 2^k with k = 0 or k = 2.
a(2^k) = 3^(k-1) for any k > 0.
a(2^k+1) = A056182(k-1) for any k > 1.
Comments