A326827 Expansion of 1 / (chi(-x)^10 * chi(-x^2)^4) in powers of x where chi() is a Ramanujan theta function.
1, 10, 59, 270, 1045, 3582, 11194, 32488, 88716, 230150, 571363, 1365148, 3153522, 7069242, 15425719, 32849906, 68421073, 139645914, 279740407, 550790788, 1067244261, 2037348726, 3835457084, 7126887974, 13081454919, 23735283778, 42598577587, 75668099822
Offset: 0
Keywords
Examples
G.f. = 1 + 10*x + 59*x^2 + 270*x^3 + 1045*x^4 + 3582*x^5 + 11194*x^6 + ... G.f. = q^3 + 10*q^7 + 59*q^11 + 270*q^15 + 1045*q^19 + 3582*q^23 + 11194*q^27 + ...
Links
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^3 QPochhammer[ x^4]^2 / (QPochhammer[ x]^5))^2, {x, 0, n}]; a[ n_] := SeriesCoefficient[ x^(-3/4) (EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x] / EllipticTheta[ 4, 0, x]^2 / 4)^2, {x, 0, n}]; nmax = 20; CoefficientList[Series[Product[(1 + x^k)^10/(1 - x^(4*k - 2))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 31 2019 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 * eta(x^4 + A)^2 / eta(x + A)^5)^2, n))};
Formula
Expansion of q^(-3/4) * (eta(q^2)^3 * eta(q^4)^2 / eta(q)^5)^2 in powers of q.
Euler transform of period 4 sequence [10, 4, 10, 0, ...].
G.f.: Product_{n>=0} (1 - x^(2*n + 1))^-10 * (1 - x^(4*n + 2))^-4.
a(n) ~ exp(2*Pi*sqrt(n)) / (256*n^(3/4)). - Vaclav Kotesovec, Oct 31 2019
Comments