A326837 Heinz numbers of integer partitions whose length and maximum both divide their sum.
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 2: {1} 3: {2} 4: {1,1} 5: {3} 7: {4} 8: {1,1,1} 9: {2,2} 11: {5} 13: {6} 16: {1,1,1,1} 17: {7} 19: {8} 23: {9} 25: {3,3} 27: {2,2,2} 29: {10} 30: {1,2,3} 31: {11} 32: {1,1,1,1,1} 37: {12}
Links
- R. J. Mathar, Table of n, a(n) for n = 1..505
Crossrefs
Programs
-
Maple
isA326837 := proc(n) psigsu := A056239(n) ; psigma := A061395(n) ; psigle := numtheory[bigomega](n) ; if modp(psigsu,psigma) = 0 and modp(psigsu,psigle) = 0 then true; else false; end if; end proc: n := 1: for i from 2 to 3000 do if isA326837(i) then printf("%d %d\n",n,i); n := n+1 ; end if; end do: # R. J. Mathar, Aug 09 2019
-
Mathematica
Select[Range[2,100],With[{y=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Divisible[Total[y],Max[y]]&&Divisible[Total[y],Length[y]]]&]
Comments