A326844 Let y be the integer partition with Heinz number n. Then a(n) is the size of the complement, in the minimal rectangular partition containing the Young diagram of y, of the Young diagram of y.
0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 3, 1, 0, 0, 1, 0, 4, 2, 4, 0, 3, 0, 5, 0, 6, 0, 3, 0, 0, 3, 6, 1, 2, 0, 7, 4, 6, 0, 5, 0, 8, 2, 8, 0, 4, 0, 2, 5, 10, 0, 1, 2, 9, 6, 9, 0, 5, 0, 10, 4, 0, 3, 7, 0, 12, 7, 4, 0, 3, 0, 11, 1, 14, 1, 9, 0, 8, 0, 12, 0, 8, 4, 13, 8, 12, 0, 4, 2, 16, 9, 14, 5, 5, 0, 3, 6, 4
Offset: 1
Keywords
Examples
The partition with Heinz number 7865 is (6,5,5,3), with diagram: o o o o o o o o o o o . o o o o o . o o o . . . The size of the complement (shown in dots) in a 6 X 4 rectangle is 5, so a(7865) = 5.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
Table[If[n==1,0,With[{y=Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]},Max[y]*Length[y]-Total[y]]],{n,100}]
-
PARI
A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); A061395(n) = if(n>1, primepi(vecmax(factor(n)[, 1])), 0); A326844(n) = ((bigomega(n)*A061395(n)) - A056239(n)); \\ Antti Karttunen, Feb 10 2023
Extensions
Data section extended up to term a(100) by Antti Karttunen, Feb 10 2023
Comments