cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A326857 E.g.f.: Product_{k>=1} (1 + x^(3*k-1) / (3*k-1)).

Original entry on oeis.org

1, 0, 1, 0, 0, 24, 0, 504, 5040, 0, 226800, 3628800, 0, 438721920, 6227020800, 16345929600, 1127656857600, 20922789888000, 58203397324800, 6697914906009600, 121645100408832000, 655224745383936000, 51359276952023040000, 1124000727777607680000
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^(3*k-1)/(3*k-1)), {k, 1, Floor[nmax/3]+1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ 2 * Pi * n! / (exp(gamma/3) * 3^(5/6) * Gamma(1/3)^2 * n^(2/3)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.

A326861 E.g.f.: Product_{k>=1} (1 + x^(3*k-2)/(3*k-2)) / (1 - x^(3*k-2)/(3*k-2)).

Original entry on oeis.org

1, 2, 4, 12, 60, 360, 2160, 16560, 149040, 1386720, 14592960, 174208320, 2173897440, 29413264320, 437473872000, 6792952636800, 112213292716800, 2002551280012800, 37194983281843200, 726119227314201600, 15112608758893324800, 326665495054151193600
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Comments

In general, if c > 0, d = 1-c and e.g.f. = Product_{k>=1} (1 + x^(c*k+d)/(c*k+d)) / (1 - x^(c*k+d)/(c*k+d)), then a(n) ~ 2 * n^(2/c) * n! / (c^(2/c) * exp(2*gamma/c) * Gamma(1 + 2/c)^2), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^(3*k-2)/(3*k-2))/(1-x^(3*k-2)/(3*k-2)), {k, 1, Floor[nmax/3]+1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ 3^(7/3) * exp(-2*gamma/3) * Gamma(1/3)^2 * n^(2/3) * n! / (8 * Pi^2), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.
Showing 1-2 of 2 results.