cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A326855 E.g.f.: Product_{k>=1} (1 + x^(4*k-1) / (4*k-1)).

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 0, 720, 0, 0, 172800, 3628800, 0, 0, 2641766400, 87178291200, 0, 0, 225422681702400, 6402373705728000, 0, 221172909834240000, 30424079849619456000, 1124000727777607680000, 0, 49241936645495193600000, 11321261082950211993600000
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^(4*k-1)/(4*k-1)), {k, 1, Floor[nmax/4]+1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ Pi * n! / (exp(gamma/4) * Gamma(1/4)^2 * n^(3/4)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.

A326858 E.g.f.: Product_{k>=1} (1 + x^(3*k-2) / (3*k-2)).

Original entry on oeis.org

1, 1, 0, 0, 6, 30, 0, 720, 5760, 0, 362880, 5417280, 17107200, 479001600, 8885479680, 32691859200, 1307674368000, 34151856076800, 214585052774400, 6402373705728000, 192796754895360000, 1542202547010048000, 55105230485200896000, 1944933030182596608000
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^(3*k-2)/(3*k-2)), {k, 1, Floor[nmax/3]+1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ n! / (3^(1/3) * Gamma(2/3) * exp(gamma/3) * n^(2/3)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.

A326860 E.g.f.: Product_{k>=1} (1 + x^(3*k-1)/(3*k-1)) / (1 - x^(3*k-1)/(3*k-1)).

Original entry on oeis.org

1, 0, 2, 0, 12, 48, 180, 2016, 15120, 72576, 1424304, 11249280, 113164128, 2066238720, 22751977248, 303261573888, 6400216892160, 85934653249536, 1440131337066240, 34330891188013056, 549029461368181248, 11212163885207900160, 296439802585781976576
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Comments

In general, if c > 0, mod(d,c) <> 0, mod(d,c) <> 1 and e.g.f. = Product_{k>=1} (1 + x^(c*k+d)/(c*k+d)) / (1 - x^(c*k+d)/(c*k+d)), then a(n) ~ Gamma(1 + (d-1)/c) * n^(2/c - 1) * n! / (c^(2/c) * exp(2*gamma/c) * Gamma(2/c) * Gamma(1 + (d+1)/c)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^(3*k-1)/(3*k-1))/(1-x^(3*k-1)/(3*k-1)), {k, 1, Floor[nmax/3]+1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ exp(-2*gamma/3) * Gamma(1/3)^2 * n! / (2 * 3^(1/6) * Pi * n^(1/3)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.
Showing 1-3 of 3 results.