A326868 Number of connected connectedness systems on n vertices.
1, 1, 4, 64, 6048, 8064000, 1196002238976
Offset: 0
Examples
The a(3) = 64 connected connectedness systems: {{123}} {{1}{123}} {{12}{123}} {{2}{123}} {{13}{123}} {{3}{123}} {{23}{123}} {{1}{12}{123}} {{12}{13}{123}} {{1}{13}{123}} {{12}{23}{123}} {{1}{23}{123}} {{13}{23}{123}} {{2}{12}{123}} {{12}{13}{23}{123}} {{2}{13}{123}} {{2}{23}{123}} {{3}{12}{123}} {{3}{13}{123}} {{3}{23}{123}} {{1}{12}{13}{123}} {{1}{12}{23}{123}} {{1}{13}{23}{123}} {{2}{12}{13}{123}} {{2}{12}{23}{123}} {{2}{13}{23}{123}} {{3}{12}{13}{123}} {{3}{12}{23}{123}} {{3}{13}{23}{123}} {{1}{12}{13}{23}{123}} {{2}{12}{13}{23}{123}} {{3}{12}{13}{23}{123}} . {{1}{2}{123}} {{1}{2}{3}{123}} {{1}{3}{123}} {{1}{2}{3}{12}{123}} {{2}{3}{123}} {{1}{2}{3}{13}{123}} {{1}{2}{12}{123}} {{1}{2}{3}{23}{123}} {{1}{2}{13}{123}} {{1}{2}{3}{12}{13}{123}} {{1}{2}{23}{123}} {{1}{2}{3}{12}{23}{123}} {{1}{3}{12}{123}} {{1}{2}{3}{13}{23}{123}} {{1}{3}{13}{123}} {{1}{2}{3}{12}{13}{23}{123}} {{1}{3}{23}{123}} {{2}{3}{12}{123}} {{2}{3}{13}{123}} {{2}{3}{23}{123}} {{1}{2}{12}{13}{123}} {{1}{2}{12}{23}{123}} {{1}{2}{13}{23}{123}} {{1}{3}{12}{13}{123}} {{1}{3}{12}{23}{123}} {{1}{3}{13}{23}{123}} {{2}{3}{12}{13}{123}} {{2}{3}{12}{23}{123}} {{2}{3}{13}{23}{123}} {{1}{2}{12}{13}{23}{123}} {{1}{3}{12}{13}{23}{123}} {{2}{3}{12}{13}{23}{123}}
Links
- Gus Wiseman, Every Clutter Is a Tree of Blobs, The Mathematica Journal, Vol. 19, 2017.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],n==0||MemberQ[#,Range[n]]&&SubsetQ[#,Union@@@Select[Tuples[#,2],Intersection@@#!={}&]]&]],{n,0,4}]
Extensions
a(6) corrected by Christian Sievers, Oct 28 2023
Comments