cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326868 Number of connected connectedness systems on n vertices.

Original entry on oeis.org

1, 1, 4, 64, 6048, 8064000, 1196002238976
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

We define a connectedness system (investigated by Vim van Dam in 2002) to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges. It is connected if it is empty or contains an edge with all the vertices.

Examples

			The a(3) = 64 connected connectedness systems:
  {{123}}              {{1}{123}}
  {{12}{123}}          {{2}{123}}
  {{13}{123}}          {{3}{123}}
  {{23}{123}}          {{1}{12}{123}}
  {{12}{13}{123}}      {{1}{13}{123}}
  {{12}{23}{123}}      {{1}{23}{123}}
  {{13}{23}{123}}      {{2}{12}{123}}
  {{12}{13}{23}{123}}  {{2}{13}{123}}
                       {{2}{23}{123}}
                       {{3}{12}{123}}
                       {{3}{13}{123}}
                       {{3}{23}{123}}
                       {{1}{12}{13}{123}}
                       {{1}{12}{23}{123}}
                       {{1}{13}{23}{123}}
                       {{2}{12}{13}{123}}
                       {{2}{12}{23}{123}}
                       {{2}{13}{23}{123}}
                       {{3}{12}{13}{123}}
                       {{3}{12}{23}{123}}
                       {{3}{13}{23}{123}}
                       {{1}{12}{13}{23}{123}}
                       {{2}{12}{13}{23}{123}}
                       {{3}{12}{13}{23}{123}}
.
  {{1}{2}{123}}              {{1}{2}{3}{123}}
  {{1}{3}{123}}              {{1}{2}{3}{12}{123}}
  {{2}{3}{123}}              {{1}{2}{3}{13}{123}}
  {{1}{2}{12}{123}}          {{1}{2}{3}{23}{123}}
  {{1}{2}{13}{123}}          {{1}{2}{3}{12}{13}{123}}
  {{1}{2}{23}{123}}          {{1}{2}{3}{12}{23}{123}}
  {{1}{3}{12}{123}}          {{1}{2}{3}{13}{23}{123}}
  {{1}{3}{13}{123}}          {{1}{2}{3}{12}{13}{23}{123}}
  {{1}{3}{23}{123}}
  {{2}{3}{12}{123}}
  {{2}{3}{13}{123}}
  {{2}{3}{23}{123}}
  {{1}{2}{12}{13}{123}}
  {{1}{2}{12}{23}{123}}
  {{1}{2}{13}{23}{123}}
  {{1}{3}{12}{13}{123}}
  {{1}{3}{12}{23}{123}}
  {{1}{3}{13}{23}{123}}
  {{2}{3}{12}{13}{123}}
  {{2}{3}{12}{23}{123}}
  {{2}{3}{13}{23}{123}}
  {{1}{2}{12}{13}{23}{123}}
  {{1}{3}{12}{13}{23}{123}}
  {{2}{3}{12}{13}{23}{123}}
		

Crossrefs

The case without singletons is A072447.
The not necessarily connected case is A326866.
The unlabeled case is A326869.
The BII-numbers of these set-systems are A326879.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],n==0||MemberQ[#,Range[n]]&&SubsetQ[#,Union@@@Select[Tuples[#,2],Intersection@@#!={}&]]&]],{n,0,4}]

Formula

a(n > 1) = 2^n * A072447(n).
Logarithmic transform of A326870.

Extensions

a(6) corrected by Christian Sievers, Oct 28 2023