A326872 BII-numbers of connectedness systems.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27, 32, 33, 34, 35, 40, 41, 42, 43, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
Offset: 1
Examples
The sequence of all connectedness systems together with their BII-numbers begins: 0: {} 1: {{1}} 2: {{2}} 3: {{1},{2}} 4: {{1,2}} 5: {{1},{1,2}} 6: {{2},{1,2}} 7: {{1},{2},{1,2}} 8: {{3}} 9: {{1},{3}} 10: {{2},{3}} 11: {{1},{2},{3}} 12: {{1,2},{3}} 13: {{1},{1,2},{3}} 14: {{2},{1,2},{3}} 15: {{1},{2},{1,2},{3}} 16: {{1,3}} 17: {{1},{1,3}} 18: {{2},{1,3}} 19: {{1},{2},{1,3}} 24: {{3},{1,3}} 25: {{1},{3},{1,3}} 26: {{2},{3},{1,3}} 27: {{1},{2},{3},{1,3}} 32: {{2,3}}
Links
- John Tyler Rascoe, Table of n, a(n) for n = 1..10000
- Gus Wiseman, Every Clutter Is a Tree of Blobs, The Mathematica Journal, Vol. 19, 2017.
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; connsysQ[eds_]:=SubsetQ[eds,Union@@@Select[Tuples[eds,2],Intersection@@#!={}&]]; Select[Range[0,100],connsysQ[bpe/@bpe[#]]&]
-
Python
from itertools import count, islice, combinations def bin_i(n): #binary indices return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1']) def a_gen(): for n in count(0): E,f = [bin_i(k) for k in bin_i(n)],0 for i in combinations(E,2): if list(set(i[0])|set(i[1])) not in E and len(set(i[0])&set(i[1])) > 0: f += 1 break if f < 1: yield n A326872_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Mar 07 2025
Comments