A326880 BII-numbers of set-systems that are closed under nonempty intersection.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 38, 39, 40, 41, 42, 43, 46, 47, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88
Offset: 1
Examples
Most small numbers are in the sequence, but the sequence of non-terms together with the set-systems with those BII-numbers begins: 20: {{1,2},{1,3}} 22: {{2},{1,2},{1,3}} 28: {{1,2},{3},{1,3}} 30: {{2},{1,2},{3},{1,3}} 36: {{1,2},{2,3}} 37: {{1},{1,2},{2,3}} 44: {{1,2},{3},{2,3}} 45: {{1},{1,2},{3},{2,3}} 48: {{1,3},{2,3}} 49: {{1},{1,3},{2,3}} 50: {{2},{1,3},{2,3}} 51: {{1},{2},{1,3},{2,3}} 52: {{1,2},{1,3},{2,3}} 53: {{1},{1,2},{1,3},{2,3}} 54: {{2},{1,2},{1,3},{2,3}} 55: {{1},{2},{1,2},{1,3},{2,3}} 60: {{1,2},{3},{1,3},{2,3}} 61: {{1},{1,2},{3},{1,3},{2,3}} 62: {{2},{1,2},{3},{1,3},{2,3}} 84: {{1,2},{1,3},{1,2,3}}
Links
- John Tyler Rascoe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Select[Range[0,100],SubsetQ[bpe/@bpe[#],Intersection@@@Select[Tuples[bpe/@bpe[#],2],Intersection@@#!={}&]]&]
-
Python
from itertools import count, islice, combinations def bin_i(n): #binary indices return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1']) def a_gen(): for n in count(0): E,f = [bin_i(k) for k in bin_i(n)],0 for i in combinations(E,2): x = list(set(i[0])&set(i[1])) if x not in E and len(x) > 0: f += 1 break if f < 1: yield n A326880_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Mar 07 2025
Comments