A326909 Number of sets of subsets of {1..n} closed under union and intersection and covering all of the vertices.
2, 2, 7, 45, 500, 9053, 257151, 11161244, 725343385, 69407094565, 9639771895398, 1919182252611715, 541764452276876719, 214777343584048313318, 118575323291814379721651, 90492591258634595795504697, 94844885130660856889237907260, 135738086271526574073701454370969, 263921383510041055422284977248713291
Offset: 0
Keywords
Examples
The a(0) = 2 through a(2) = 7 sets of subsets: {} {{1}} {{1,2}} {{}} {{},{1}} {{},{1,2}} {{1},{1,2}} {{2},{1,2}} {{},{1},{1,2}} {{},{2},{1,2}} {{},{1},{2},{1,2}}
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}] (* Second program: *) A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]]; A006058 = Cases[Import["https://oeis.org/A006058/b006058.txt", "Table"], {, }][[All, 2]]; a[n_] := A006058[[n + 1]] + A000798[[n + 1]]; a /@ Range[0, 18] (* Jean-François Alcover, Dec 30 2019 *)
Formula
a(n) = A000798(n) + A006058(n). - Jean-François Alcover, Dec 30 2019, after Gus Wiseman's comment in A006058.
Comments